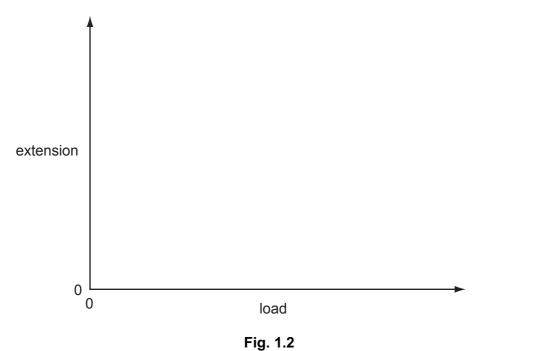
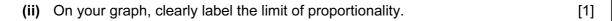

Centre Number	Candidate Number	Name
-		E INTERNATIONAL EXAMINATIONS ertificate of Secondary Education
PHYSICAL S	SCIENCE	0652/03
Paper 3 Exte	ended	October/November 2006
		1 hour 15 minutes
	wer on the Question Pap laterials are required.	Jer.
READ THESE INSTRU	JCTIONS FIRST	
Vrite your Centre num Vrite in dark blue or bla You may use a soft per Yoo not use staples, pap Answer all questions. A copy of the Periodic	ber, candidate number a ack pen. ncil for any diagrams, gra per clips, highlighters, glu Table is printed on page ination, fasten all your wo	20.
Vrite your Centre num Vrite in dark blue or bla You may use a soft per Yoo not use staples, pap Answer all questions. A copy of the Periodic	ber, candidate number a ack pen. ncil for any diagrams, gra per clips, highlighters, glu Table is printed on page ination, fasten all your wo	phs, tables or rough working. le or correction fluid. 20. ork securely together.
Vrite your Centre num Vrite in dark blue or bla You may use a soft per Yoo not use staples, pap Answer all questions. A copy of the Periodic	ber, candidate number a ack pen. ncil for any diagrams, gra per clips, highlighters, glu Table is printed on page ination, fasten all your wo	phs, tables or rough working. le or correction fluid. 20. ork securely together. the end of each question or part question.
Vrite your Centre num Vrite in dark blue or bla You may use a soft per Yoo not use staples, pap Answer all questions. A copy of the Periodic	ber, candidate number a ack pen. ncil for any diagrams, gra per clips, highlighters, glu Table is printed on page ination, fasten all your wo	phs, tables or rough working. le or correction fluid. 20. ork securely together.

For Examiner's Use									
1									
2									
3									
4									
5									
6									
7									
8									
Total									

This document consists of 17 printed pages and 3 blank pages.

- For Examiner's Use
- 1 (a) A spring is loaded with a mass of 250 g and comes to rest as shown in Fig. 1.1. Mark on Fig. 1.1 the size and direction of the forces acting on the **mass** in this position.
 - g = 10 N/kg

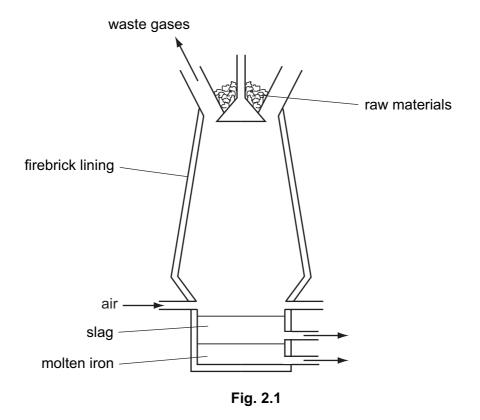



[4]

(b) Masses are added to the spring and it stretches beyond its limit of proportionality.

Fig. 1.1

(i) Sketch, on Fig. 1.2, the shape of the graph you would expect. [2]



For

Use

2 Fig. 2.1 shows the production of iron in a blast furnace.

- (a) Raw materials loaded into the top of the furnace are iron ore, coke and limestone. In the furnace iron(III) oxide, Fe₂O₃, reacts with carbon monoxide to produce iron metal.
 - (i) State the name of an ore containing iron(III) oxide.

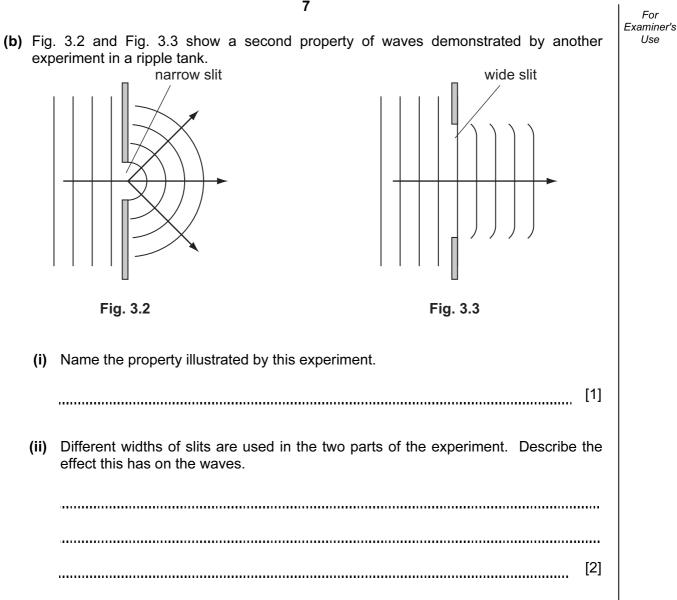
[1]

(ii) Explain how carbon monoxide is formed in the blast furnace.

[2]

(iii) Write a balanced equation for the reaction between carbon monoxide and iron(III) oxide.

[2]


(b) An ore used in a blast furnace contains 80% by mass of iron(III) oxide, Fe₂O_{3.} The remaining 20% does **not** contain any iron or iron compounds. What mass of iron can be extracted from each tonne of this ore? Show your working.

5

mass = _____ tonne [4]

Examiner's (a) Fig. 3.1 shows one wave property demonstrated by water waves in a ripple tank. The Use 3 figure is drawn 1/5th full size and the frequency of the waves is 2 Hz. mirror source of wave scale 1:5 ripple tank Fig. 3.1 (i) Name the property illustrated by this experiment. [1] (ii) Use Fig. 3.1 to calculate the wavelength of the wave in the ripple tank. wavelength = [2] (iii) Calculate the speed of the water waves. speed = [2]

For

4 A little metal powder is added to an aqueous solution of a metal salt. Any change to the appearance of the solid is noted. The experiment is repeated with different metals and metal salt solutions.

Results for these experiments are shown in Fig. 4.1.

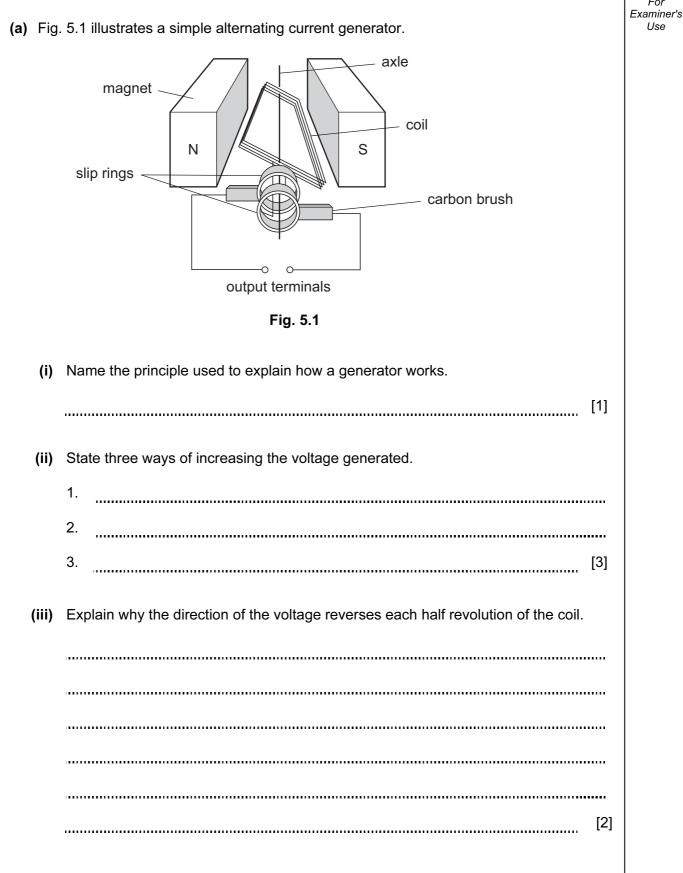
		aqueous solution of metal salt												
metal powder	copper(II) sulphate	iron(II) sulphate	magnesium sulphate	aluminium sulphate										
aluminium	forms a red- brown solid	forms a dark grey solid	no change	no change										
copper	no change	no change	no change	no change										
iron	forms a red- brown solid	no change	no change	no change										
magnesium	forms a red- brown solid	forms a dark grey solid	no change	forms a dark grey solid										

(a) (i) A red-brown solid is formed when magnesium is added to aqueous copper(II) sulphate.
Name this solid.

[1]

(ii) Write a balanced equation for the reaction that takes place between magnesium and copper(II) sulphate.

[2]

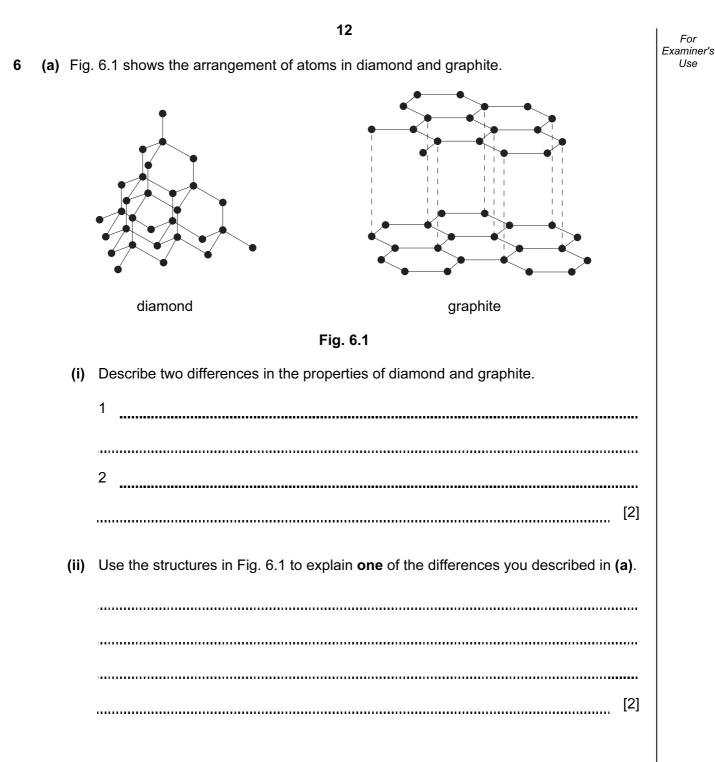

(b) Use the information in Fig. 4.1 to place the four metals in order of reactivity.

most reactive	
least reactive	

[3]

(c) (i) When left in damp conditions iron rusts but aluminium does not show any change. Explain this difference.
[2]
(ii) Suggest how another metal can be used to prevent iron from rusting.
[2]

9



For

Use

5

(b) (i) Draw a circuit that could be connected to the output terminals to produce a direct current. Label your components.
output terminals
o
o
(ii) State the difference between the direction of conventional current and the direction of electron flow.
[1]

(b) Fig. 6.2 shows the arrangement of particles in a metal.

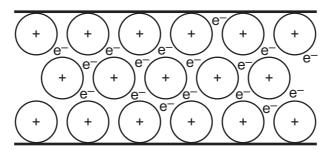


Fig. 6.2

		13	For
	Use	e information from Fig. 6.2 to help explain the following facts about this metal.	Examiner's Use
	(i)	The metal conducts electricity.	
		[2]	
	(ii)	The metal is malleable.	
		[2]	
	— .		
(c)	Ihe	e metal is mixed with another metal to make an alloy.	
	(i)	Suggest how the malleability of the alloy will compare with that of the metal in Fig. 6.2.	
		[1]	
	(ii)	Explain your suggestion.	
	、 /		
		[2]	

For Examiner's Use

[2]

7 Fig. 7.1 shows a refrigerator in which a liquid absorbs thermal energy from the cold compartment and evaporates. As the vapour is compressed by the pump, work is done on it. The vapour condenses, giving out thermal energy to the surroundings through the cooling fins on the back of the refrigerator.

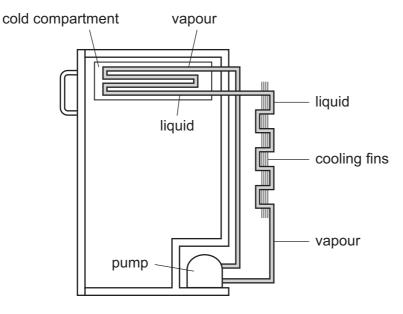
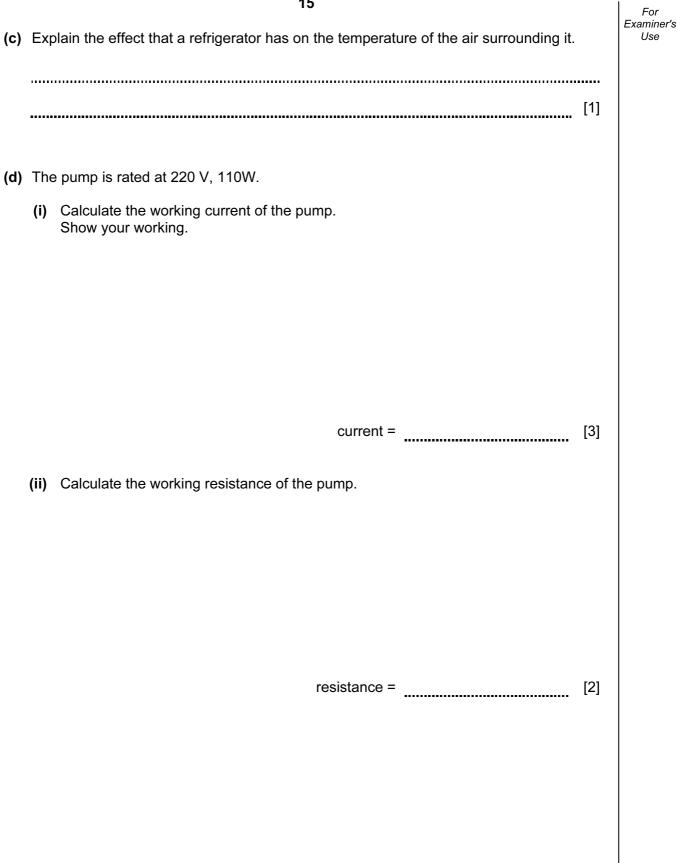



Fig. 7.1

(a) Explain the difference between boiling and evaporation.

(b) Explain why the pump compresses the vapour much more than it could compress a liquid.

		16	For
8	Methar	nol, CH ₃ OH, and ethanol, C ₂ H ₅ OH, belong to the homologous series of alcohols.	Examiner's Use
	(a) Wh	nat is meant by the term homologous series?	
		[2]	
	(b) Eth	nanol is manufactured from ethene.	
	(i)	How is this process carried out?	
		[2]	
	(ii)	Write an equation for the process.	
		[1]	
	(iii)	Name another way that ethanol is made.	
		[1]	
	(iv)	State one industrial use of ethanol.	
		[1]	
	Dra	e atoms in methanol, CH ₃ OH, are joined by covalent bonds. aw a diagram to show the electron arrangement in methanol.	
	5N	ow only outer shell electrons in your diagram.	

BLANK PAGE

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

		0	H 4	Helium	00	Ne	Neon	40	Ar	Argon	84	ĸ	Krypton	131	Xe	Xenon		Rn	adon				175	Lu	Lutetium		Ľ	Lawrencium 103
				° [≚] •			10			18		-	36			54 X			86					_	4		_	
		II>			19	ш	Fluorine 9	35.5	Cl	Chlorine 17	80	B	Bromine 35	127	Ι	lodine 53		At	Astatine 85				173	٩۲	Ytterbium 70		°N N	Nobelium 102
		>			16	0	Oxygen 8	32	S	Sulphur 16	79	Se	Selenium 34	128	Te	Tellurium 52		Ъо	Polonium 84				169	Tm	Thulium 69		Md	Mendelevium 101
		>			14	z	Nitrogen 7	31	٩	Phosphorus 15	75	As	Arsenic 33	122	Sb	Antimony 51	209	Bi	Bismuth 83				167	ц	Erbium 68		Fm	Fermium 100
		≥			12	с С	Carbon 6	28	Si	Silicon 14	73	Ge	Germanium 32	119	Sn	50 Tin	207	Pb	Lead 82				165	Ю	Holmium 67		Es	Einsteinium 99
		Ξ			5	B	5 5	27	٩l	Aluminium 13	70	Ga	Gallium 31	115	In	Indium 49	204	Τl	Thallium 81				162	Dy	Dysprosium 66		cf	Californium 98
nts											65	Zn	Zinc 30	112	Cd	Cadmium 48	201	Hg	Mercury 80				159	Тb	Terbium 65		BK	Berkelium 97
DATA SHEET The Periodic Table of the Elements											64	Cu	Copper 29	108	Ag	Silver 47	197	Au	Gold 79				157	Gd	Gadolinium 64		Cm	Curium 96
DATA SHEET lic Table of th	Group	dn									28	İ	Nickel 28	106	Pd	Palladium 46	195	Ł	Platinum 78				152	Eu	Europium 63		Am	Americium 95
DAT/ iodic Ta	Gre				_						59	ပိ	Cobalt 27	103	Rh	Rhodium 45	192	Ir	Iridium 77				150	Sm	Samarium 62		Pu	Plutonium 94
The Per			- I	Hydrogen 1							56	Fe	Iron 26	101	Ru	Ruthenium 44	190	So	Osmium 76					Pm	Promethium 61		dN	Neptunium 93
											55	Mn	Manganese 25		ЧC	Technetium 43	186	Re	Rhenium 75				144	Nd	Neodymium 60	238	D	Uranium 92
											52	ບັ	Chromium 24	96	Mo	Molybdenum 42	184	3	Tungsten 74				141	P	Praseodymium 59		Ра	Protactinium 91
											51	>	Vanadium 23	93	Νb	Niobium 41	181	Ta	Tantalum 73				140	ce	Cerium 58	232	Ч	Thorium 90
											48		Titanium 22	91	zr	Zirconium 40	178	Ŧ	Hafnium 72				1			nic mass	lod	nic) number
											45	Sc	Scandium 21	89	≻	Yttrium 39	139	La	Lanthanum 57 *	227	Ac	Actinium 89 †		u series	201100	a = relative atomic mass	X = atomic symbol	b = proton (atomic) number
		=			6	Be	Beryllium 4	24	Mg	Magnesium 12	40	Ca	Calcium 20	88	S	Strontium 38	137	Ba	Barium 56	226	Ra	Radium 88	Cionod+no			a a	×	P
		_			7	:	Lithium 3	23	Na	Sodium 11	39	¥	Potassium 19	85	Rb	Rubidium 37	133	S	Caesium 55		Fr	Francium 87	* 50 71 1		-02		Key	٩

The volume of one mole of any gas is 24 \mbox{dm}^3 at room temperature and pressure (r.t.p.).

20